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Abstract
The phonon properties of multiferroic BiFeO3 (BFO) nanoparticles are studied using a Green’s
function technique on the basis of the Heisenberg and the transverse Ising models, taking into
account anharmonic spin–phonon and phonon–phonon interaction terms. The phonon spectrum
is obtained for different exchange, magnetoelectric, and spin–phonon interaction constants. The
influence of temperature, surface and size effects on the phonon energy and damping is
discussed. The phonon energy and damping in BFO nanoparticles are greater in comparison to
those in bulk BFO. The strong spin–phonon interactions lead to anomalies in the phonon
spectrum around the magnetic and ferroelectric phase transitions. The influence of an applied
magnetic field is studied, too. The predictions are consistent with experimental results.

1. Introduction

Magnetoelectric multiferroics, materials which exhibit si-
multaneous magnetic and ferroelectric order, have attracted
a lot of attention in the last few years because of their
potential for cross electric and magnetic functionality [1].
A fundamental understanding and experimental observation
of the coupling mechanism between the (anti)ferroelectric
and (anti)ferromagnetic order are of great interest. How-
ever, very little is known about the behavior of phonons
in magnetoelectric multiferroics, especially in multiferroic
nanostructures, although investigations of phonons have in
the past played a crucial role in the understanding of classic
ferroelectrics (FEs). Phonons are also known to be influenced
by spin correlation thus offering a complementary tool [2].
Recent investigations by Raman and infrared spectroscopy,
by transmittance and reflectance measurements have revealed
the importance of phonon effects in multiferroics. There is
experimental evidence for a strong spin–phonon coupling in
these substances [3–5]. One of the natural ferroelectromagnets
is BiFeO3 (BFO), which exhibits both ferroelectricity and fer-
romagnetism (i.e. multiferroism, TC = 1100 K, TN = 643 K),
an intrinsic multifunctionality that would ostensibly make it
a strong candidate for nanoscale electronics applications. In
order to determine and understand the role of phonons in
multiferroics, Haumont et al [6] have undertaken a first-time

Raman scattering study of BFO. Their experimental results
reveal pronounced phonon anomalies around the magnetic
phase transition temperature. These anomalies are attributed to
the multiferroic character of the materials. Fukumura et al [7]
have reported detailed Raman spectra of BFO single crystals
in the temperature range 4–1100 K, and consider coupling of
phonons with the magnetic ordering and the structural phase
transition. Singh et al [8] have observed Raman scattering
from magnons in the frequency range from 10 to 65 cm−1

in BFO single crystals at cryogenic temperatures. Raman
spectra of BFO multiferroic ceramics have been reported by
Yuan et al [9], Kamba et al [10] and Seidel et al [11]. Lobo
et al [12] discussed the infrared reflectivity measurement on
a multiferroic BFO single crystal between 5 K and room
temperature. Their findings show that the softening of the
lowest frequency E mode is responsible for the temperature
dependence of the dielectric constant, indicating that the
ferroelectric transition in BFO is soft-mode driven. Recently,
Singh et al [13, 14] first observed room-temperature spectra
with phonon mode assignments of the (111)c-oriented BFO
epitaxial films with rhombohedral R3c symmetry and the
(001)c-oriented BFO epitaxial films with pseudo-tetragonal
symmetry. The phonon frequencies in BFO thin films [13]
are greater in comparison to those in bulk BFO [6]. Bea et al
[15] have studied the Raman spectra of BFO thin films and
observed also that both the unpolarized and polarized Raman
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spectra are different from those of bulk BFO [6]. Using the
polymerized complex method, Popa et al [16] have prepared
single-phase BFO powders with particle size from 7 to 11 nm,
which have been investigated by Raman spectroscopy between
350 and 600 ◦C. The obtained reduced intensities and widened
bands could be related to the average crystal size within the
powder particles.

In order to explain the experimentally observed enhanced
polarization and magnetization in multiferroic nanoparticles,
we have investigated in our previous paper [17] the influence
of the surface and the particle size on ferromagnetic and
ferroelectric properties based on two microscopic models—
the modified Heisenberg and the transverse Ising model and
material specific coupling term. The coupling between electric
and magnetic polarizations in multiferroic BFO nanoparticles
is demonstrated by studying the effect of an external magnetic
field on different ferroelectric properties [18]. The aim of the
present paper is to extend our previous one [17] and to apply
the microscopic model including the spin–phonon interactions
to study the optical phonon spectra in BFO nanoparticles.

2. The model

The Hamiltonian of the multiferroic system which is
appropriate for hexagonal RMnO3 and BFO can be presented
as:

H = H m + H e + H me. (1)

H m is the Hamiltonian for the magnetic subsystem, which
is given by the Heisenberg Hamiltonian:

H m = − 1
2

∑

〈i j〉
A1(i, j)Bi · B j − 1

2

∑

[i j ]
A2(i, j)Bi · B j

− gμB H
∑

i

Bz
i , (2)

where Bi is the Heisenberg spin at the site i , and the exchange
integrals A1 > 0 and A2 < 0 represent the coupling between
the nearest and next-nearest neighbors, respectively. H is the
external magnetic field parallel to the z axis. 〈i j〉 and [i j ]
denote the single summation over the nearest neighbors and
the next-nearest neighbors, respectively. We take A1 = A1s ,
A2 = A2s on the surface of the particle and A1, A2 in the
particle. The notation s is used to describe all interaction
constants on the surface.

H e denotes the Hamiltonian for the electrical subsystem
which is dealt within the framework of the transverse Ising
model (TIM). Thus H e in the presence of an electric field can
be written as:

H e = −�
∑

i

Sx
i − 1

2

∑

i j

Ji j S
z
i Sz

j − μE
∑

i

Sz
i , (3)

where Sx
i , Sz

i are the spin-1/2 operators of the pseudo-spins,
E represents the external electric field, Ji j > 0 denotes
the nearest-neighbor pseudo-spin interaction, and � is the
tunneling frequency. Blinc and de Gennes proposed the
TIM for the description of order–disorder KDP-type FEs [19].
For H-bonded FEs the transverse field represents the proton
tunneling between the two equilibrium positions on the H-
bonds. Further, the TIM is applied to displacive type FEs

such as BaTiO3 (BTO) [20, 21], too. According to the
order–disorder model, the disorder in the paraelectric phase in
BTO is associated with the position of the Ti ions. Instead
of occupying the body center positions as in an ideal cubic
perovskite structure, the Ti ions are randomly displaced along
the cube diagonals causing disorder. In the case of a tunneling
frequency very small with respect to the interaction constant,
one may use the TIM as a model for order–disorder FEs
without tunneling motion (e.g. for NaNO2, TGS). Therefore
the TIM can be applied to describe the electric polarization in
all types of FEs. The mean electric polarization is proportional
to the z component of the pseudo-spins introduced in the TIM.
In the ordered phase we have the mean values 〈Sx 〉 �= 0 and
〈Sz〉 �= 0, and it is appropriate to choose a new coordinate
system rotating the original one used in (2) by the angle θ

in the xz plane. The rotation angle θ is determined by the
requirement 〈Sx′ 〉 = 0 in the new coordinate system.

The most important term is H me which describes the
coupling between the magnetic and the electric subsystems
in the ferroic compound, and can be applied to hexagonal
multiferroic RMnO3 compounds and to BiFeO3:

H me = −g
∑

〈i j〉

∑

kl

Sz
k Sz

l Bi · B j . (4)

Here g is the coupling constant between the magnetic and
the electric order parameters. It must be noted here that the
orthorhombic perovskite RMnO3 and the hexagonal RMnO3

are in very different classes of magnetoelectrics. The use of the
TIM and biquadratic coupling between the pseudo-spins and
magnetic moments implies that the magnetic and ferroelectric
orderings have independent mechanisms. In particular, this
generally leads to different transition temperatures for the two
subsystems. The model with biquadratic coupling between
the pseudo-spins and the magnetic moments can be applied
to multiferroic substances where TC � TN, for example in
hexagonal RMnO3 and BiFeO3 [22]. In the orthorhombic
perovskite RMnO3 [23] the leading magnetoelectric interaction
term is linear in the electrical dipole moment, due to the
improper nature of its ferroelectricity. The same applies to
RMn2O5, which is also an improper ferroelectric.

In order to investigate the phonon spectrum and the
experimentally obtained strong spin–phonon coupling we have
to include the following two terms in the Hamiltonian in
equation (1):

H ′ = Hph + Hsp−ph. (5)

The first term Hph contains the lattice vibrations including
anharmonic phonon–phonon interactions:

Hph = 1

2!
∑

i

(ω0
i )

2ai a
+
i + 1

3!
∑

i, j,r

Bph(i, j, r)Qi Q j Qr

+ 1

4!
∑

i, j,r,s

Aph(i, j, r, s)Qi Q j Qr Qs, (6)

where Qi and ω0
i are the normal coordinate and frequency,

respectively, of the lattice mode. The vibrational normal
coordinate Qi can be expressed in terms of phonon creation
and annihilation operators: Qi = (2ω0

i )
−1/2(ai + a+

i ).

2
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Hsp describes the interaction of the spins with the
phonons:

Hsp = − 1
2

∑

i, j,k

F̄m(i, j, k)Qi Bz
j Bz

k

− 1
4

∑

i, j,r,s

R̄m(i, j, r, s)Qi Q j Bz
r Bz

s + h.c.

− 1
2

∑

i, j

F̄e(i, j)Qi S
z
j − 1

4

∑

i, j,r

R̄e(i, j, r)Qi Q j Sz
r + h.c.,

(7)

where the indices ‘e’ and ‘m’ in the interaction constants
denote the interaction of the phonons with the pseudo-spins
and the magnetic spins, respectively. The first and third terms
in equation (7) describe spin–phonon interaction effects arising
from the first powers, whereas the second and fourth terms
denote the second powers in the relative displacement of the
lattice site away from equilibrium. F(i) = F̄(i)/(2ω0

i )
1/2 and

R(i, j) = R̄(i, j)/(2ω0
i )

1/2(2ω0
j )

1/2 designate the amplitudes
for coupling phonons to the spin excitations in first and second
order, respectively.

3. The phonon Green’s function

In this section we present calculations for obtaining the phonon
Green’s function for a ferroic nanoparticle. This method
seems still probably the most appropriate tool to study complex
systems with low symmetry. Different to extended materials
the Green’s function for small particles has to be formulated
in real space. A magnetic nanoparticle is defined by fixing
the origin of a certain spin in the center of the particle and
including all spins within the particle into shells. The shells are
numbered by n = 0, . . . , N , where n = 0 denotes the central
spin and n = N represents the surface shell of the system.

Macroscopic and microscopic quantities can be calculated
by using the retarded Green’s function which is defined as:

Grs(t) = −iθ(t)〈[ar (t); a+
s ]〉. (8)

The phonon energies ωrs and their damping γrs are calculated
using the method of Tserkovnikov [24]. After a formal
integration of the equation of motion for the Green’s
function (8), one obtains

Grs(t) = −iθ(t)〈[ar ; a+
s ]〉 exp(−iωrs(t)t) (9)

where

ωrs(t) = ωrs − i

t

∫ t

0
dt ′t ′

( 〈[ jr(t); j+
s (t ′)]〉

〈[ar (t); a+
s (t ′)]〉

− 〈[ jr(t); a+
s (t ′)]〉〈[ar (t); j+

s (t ′)]〉
〈[ar (t); a+

s (t ′)]〉2

)
(10)

with the notation jr (t) = 〈[ar , Hint]〉. The time-independent
term

ωrs = 〈[[ar , H ]; a+
s ]〉

〈[ar ; a+
s ]〉 (11)

is the phonon energy in the generalized Hartree–Fock approx-
imation (GHFA). The time-dependent term in equation (10)
includes damping effects.

For the phonon energies after neglecting the transverse
spin correlation functions 〈B+

i B−
j 〉 and decoupling of the

longitudinal correlation functions 〈Bz
i Bz

j〉 → 〈Bz
i 〉〈Bz

j 〉 we
obtain the following expression in the size-dependent GHFA:

ω2
rs = (ω0

r )
2 − 2ω0

r δrs

(
1
2 〈Sz

r 〉 cos θ Rr,e

+ 1

2N2

∑

i j

Ri jrs,m〈Bz
i 〉〈Bz

j 〉 − 1

N

∑

i

Bph
irs〈Qi 〉

− 1

2N2

∑

i j

Aph
i jrs(1 + 2〈a+

i a j〉)
)

(12)

with

〈Qr 〉 =
{
〈Sz

r 〉 cos θ Fr,e + 1

2N2

∑

i j

Fi jr,m〈Bz
i 〉〈Bz

j 〉

− 1

N2

∑

i j

Bph
i jr(1 + 2〈a+

i a j〉)
}{

ω0
r − 〈Sz

r 〉 cos θ Rr,e

− 1

2N2

∑

i j

Ri jr,m〈Bz
i 〉〈Bz

j 〉

+ 1

2N2

∑

i j

Aph
i jr(1 + 2〈a+

i a j〉)
}−1

. (13)

M = 〈Bz
i 〉 is the local magnetization and P = 〈Sz

i 〉 is the
local polarization of the nanoparticle, which are calculated
from the spin Green’s functions [17]. The phonon frequency
ω is at first renormalized owing to the anharmonic phonon–
phonon and spin–phonon interactions. If they are not taken into
account, then ω is identical to the energy ω0 of the uncoupled
optical phonon. It will be independent of temperature. The
calculations demonstrate that, if we want to obtain a correct
temperature dependence of the phonon modes in ferroic
nanoparticles, we must not neglect the effects of spin ordering,
and the Hamiltonian which describes the system must include
terms taking into account not only the anharmonic phonon–
phonon interaction but also the anharmonic spin–phonon
interaction. Moreover, the phonon frequency is renormalized
also through the magnetoelectric coupling g which is included
in the calculation of the magnetization M .

The experimentally obtained broadened peaks in the
Raman spectra of nanoparticles, and especially of BFO
ceramics [11] and nanoparticles [16] cannot be understood
within the random phase approximation (RPA) for small
particles. We go beyond the RPA and calculate the
phonon damping effects in multiferroic nanoparticles, taking
into account anharmonic phonon–phonon and spin–phonon
interactions. Then we obtain the following expression for the
phonon damping:

γ (rs) = γph−ph(rs) + γsp−ph(rs). (14)

γph−ph is the damping part which arises from the phonon–
phonon interaction:

γph−ph(rs) = 3π

N2

∑

i j

(Bph
i jr)

2(n̄i − n̄ j )

× δrs[δ(−ωi − ω j + ωr ) − δ(ωi − ω j + ωr )]
3
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+ 4π

N3

∑

i j l

(Aph
i j lr )

2δrs[n̄i(1 + n̄ j + n̄l) − n̄ j n̄l ]

× δ(ωi − ω j + ωl − ωr ). (15)

γsp−ph(rs) is the damping due to the spin–phonon interactions:

γsp−ph(rs) = π

4
〈Sz

r 〉 sin2 θ F2
rs,eδrsδ(Er − ωs)

+ π

4N2
sin2 θ

∑

i j

R2
i jr,e〈Sz

r 〉(n̄i − L̄ j )δrsδ(ωi − E j − ωr )

+ π

N3
cos2 θ

∑

i j l

R2
i jlr,e〈Sz

r 〉δrs [L̄i(1 + n̄ j + L̄l) − n̄ j L̄l ]

× δ(Ei − E j − ωl + ωr )

+ 2π

N2

∑

i j

F2
i jr,m〈Bz

i 〉〈Bz
j 〉(N̄i − N̄ j )δrsδ(εi − ε j − ωr )

+ 2π

N3

∑

i j l

R2
i j lr,m〈Bz

i 〉〈Sz
j 〉δrs [(N̄i − N̄ j )(1 + n̄l)

+ N̄i (1 + N̄ j ) + 〈Sz
i 〉〈Sz

j 〉]δ(εi − ε j − ωl + ωr ). (16)

Ei and εi are the excitations in the electric and magnetic
systems, respectively, observed in [17]. N̄i = 〈B−

i B+
i 〉, L̄i =

〈S−
i S+

i 〉, and n̄i = 〈a+
i a−

i 〉 are correlation functions which
are calculated via the spectral theorem. For low temperatures,
the spin–phonon and phonon–phonon interactions contribute
to the damping, whereas in the vicinity of and above TC

only the anharmonic phonon–phonon interaction terms from
equation (15) remain.

4. Numerical results and discussion

In [2] we have calculated the temperature dependence of the
phonon energy of hexagonal bulk multiferroics for different
anharmonic spin–phonon interactions Re and Rm constants
which can be positive, R > 0, or negative, R < 0. The
frequency shift below TN and TC can be explained only if
we assume a spin-dependent force constant given by the first
and second derivatives of the magnetic exchange interaction
A1(ri − r j) (or Ji j for the ferroelectric system) between the i th
and j th ions with respect to the phonon displacements ui , u j .
This displacement is interpreted by taking the nearest-neighbor
exchange integral A1(ri − r j ) (or Ji j ) and the next-nearest-
neighbor magnetic exchange integral A2(ri − r j ) (or Ki j for
the ferroelectric system). The squared derivatives of A1 and
A2 (or J and K ) with respect to the phonon displacement can
have opposite signs. But the competition between the exchange
interaction of nearest and next-nearest neighbors is only one of
the possible explanations. In principle, the different sign of R
can be connected also with different strains due to the influence
of defects and mechanical strain, with different ordering in the
shells and between the shells in nanoparticles etc.

In this section we shall present the numerical calculations
of our theoretical results for multiferroic nanoparticles, taking
the following model parameters which are appropriate for
BiFeO3 with TN = 640 K and TC = 1100 K: A1 = 35 K,
A2 = −20 K, � = 20 K, J = 2350 K, g = 50 K,
ω0 = 340 cm−1, Fe = Fm = 10 cm−1, Rm = −6 cm−1,
Re = −50 cm−1, Aph = −5 cm−1, Bph = 0.5 cm−1,

Figure 1. Temperature dependence of the phonon energy ω for a
multiferroic nanoparticle with N = 4 shells and different surface
interaction constants: (1) Rms/Rm = 0.2, Res/Re = 0.2;
(2) Rms/Rm = 1, Res/Re = 1; (3) Rms/Rm = 5, Res/Re = 5.

S = 2.5 for the magnetic spins and S = 0.5 for the
pseudo-spins. The crystalline lattice spacing in nanoparticles,
for example, can be altered by surface relaxation, stress, or
strain. It is now established that for the case of real crystals,
when their dimensions are relatively small, surface modes
and effects of the dimensions will also manifest themselves
in addition to the normal modes of the infinite lattice. We
include the surface effects by different coupling parameters
within the surface shell Rms (Res), and within the bulk and
between the surface and the bulk Rm (Re). Due to the changed
number of next-nearest neighbors on the surface, the reduced
symmetry and the changed lattice constants, the interaction
constants can take different values for the surface compared
to the value in the particle. We present in figure 1 the
surface effects on the temperature dependence of the phonon
energy ω of a multiferroic nanoparticle with N = 4 shells
for Rm < 0, Re < 0 and different surface values Rms and
Res. We have chosen negative spin–phonon and pseudo-spin–
phonon interaction constants, because they lead to the correct
temperature behavior, softening of the phonon modes, obtained
in BFO nanoparticles. It can be seen that for Rms < Rm and
Res < Re (curve 1) the phonon energy of the nanoparticle is
smaller than the bulk one (curve 2), whereas for Rms > Rm

and Res > Re (curve 3) it is larger than for the bulk. The
influence of the surface spin–phonon interaction Rms is greater
than that of the surface pseudo-spin–phonon interaction Res

(figures 2 and 3). For the case that the surface interaction
constant is larger than the bulk one (curve 3), the changes
in the phonon energy of the nanoparticles are stronger. With
increasing of the surface anharmonic spin–phonon and pseudo-
spin–phonon constants Rms and Res, the phonon energy ω

(figures 1–3) and the phonon damping γ increase (figure 4).
The influence of the spin–phonon interaction constant Rm is
only below TN in the phase where ferroelectric and magnetic
properties exist together, whereas Re influences the properties
in the whole temperature region T < TC. Above TC only
the anharmonic phonon–phonon interactions remain. In our

4
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Figure 2. Temperature dependence of the phonon energy ω for a
multiferroic nanoparticle with N = 4 shells, Res/Re = 1, and
different surface spin–phonon interaction constants Rms/Rm: (1) 0.2;
(2) 1; (3) 5.

Figure 3. Temperature dependence of the phonon energy ω for a
multiferroic nanoparticle with N = 4 shells, Rms/Rm = 1, and
different surface pseudo-spin–phonon interaction constants Res/Re:
(1) 0.2; (2) 1; (3) 5.

previous paper [25] we have shown the importance of the
spin–phonon interaction Rm in ferromagnetic nanoparticles,
which here also plays an important role. The temperature
dependence of ω(T ) including only anharmonic phonon–
phonon interaction, i.e. Rm = 0, is very small. We have
concluded that if we want to explain the experimental data of
the temperature dependence of the phonon modes in magnetic
nanoparticles we must take into account higher-order spin–
phonon interactions, which play an important role below TN.
The nonlinear phonon spectra are due to effects of the spin
ordering on the phonon properties.

The temperature dependence of the phonon mode is shown
in figure 1. It can be seen that the phonon energy decreases
with increasing temperature. This is in agreement with the
experimental data. Lobo et al [12] have obtained from infrared
reflectivity measurements that the E(1) mode softens strongly
from 5 K to room temperature. High temperature infrared [10]

Figure 4. Dependence of the phonon damping γ on the surface
spin–phonon interaction constant Rms for a multiferroic nanoparticle
with N = 4 shells, Res/Re = 1 and different temperatures T :
(1) 100; (2) 300 K.

and Raman [6] measurements indicate that this mode continues
to soften. We obtain an anomaly, a kink around the magnetic
phase transition temperature TN = 80 K, but no strong phonon
softening is observed near TC. The anomaly near TN arises
from spin–phonon interactions. The phonons show a magnetic
shift below TN, where the moments of Fe start to order. The
kink is due to the magnetoelectric effect, too. Above TC =
900 K the phonon energy slightly decreases. The pseudo-spin–
phonon interaction Re influences mainly the phonon energy
between TN and TC. With increasing |Re| the curve becomes
steeper. The obtained temperature behavior in figure 1 with
drastic changes at the two critical temperatures TN and TC

due to a phonon coupling with the magnetic ordering and the
structural phase transition, respectively, was measured in the
phonon spectra of BiFeO3 by Haumont et al [6] and Fukumura
et al [7]. A similar phonon anomaly was observed near the
Néel temperature TN in BFO thin films by Ramirez et al [26],
in Mn-doped BFO nanoparticles by Fukumura et al [27] and
in YbMnO3 thin films by Fukumura et al [28]. This was
interpreted by a coupling between the phonon and magnetic
spin system. Haumont et al [6] argued that because the
frequency of the lowest mode did not vanish smoothly at the
Curie temperature, the ferroelectric transition in BFO would
not be soft-mode driven. This picture was later revised to
propose that the incomplete phonon softening could rather be
a sign of a first-order phase transition [10, 26]. However, both
scenarios remained speculative. Recently, Lobo et al [12] have
shown that the softening of the lowest frequency E(1) mode is
responsible for the temperature dependence of the dielectric
constant, indicating that the ferroelectric transition in BFO
single crystals is soft-mode driven, contrary to the work of
Hermet et al [29], and in agreement with Kamba et al [10].

The shift of the phonon spectra is dependent not only
on the sign of the spin–phonon interaction constant Rm but
also on the magnitude of |Rm| (figures 5 and 6). With
increase of the magnetic spin–phonon coupling |Rm|, the
phonon frequency increases nearly linearly (figure 6). The

5
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Figure 5. Temperature dependence of the phonon energy ω for a
multiferroic nanoparticle with N = 7 shells, Rms/Rm = 1.5,
Res/Re = 1.5, and different bulk spin–phonon interaction constants
|Rm|: (1) 2; (2) 6; (3) 10 cm−1.

Figure 6. Dependence of the phonon energy ω on the bulk
spin–phonon interaction constant |Rm| for a multiferroic nanoparticle
with N = 7 shells, Rms/Rm = 1.5, Res/Re = 1.5 and T = 300 K.

spin–phonon interaction constant Rm is connected through
the first and second derivatives with the exchange interaction
constant A1(ri − r j ) which depends on the distance between
the neighbor spins. So it can be smaller when the distance
is bigger, i.e. the radii of the ions are smaller, or greater for
smaller distance, i.e. greater radius. So we have different Rm-
values in different multiferroic compounds. With decreasing
Rm, i.e. with decreasing radius of the rare earth ion, the
anomaly around TN is smaller, for example in RMnO3

nanoparticles this could be the case for R = Y. The phonon
energy shows a strong analogous dependence on the exchange
interaction constant of the magnetic subsystem A1(ri − r j ),
which depends on the distance between the spins and indirectly
on the radius of the ions. ω decreases with increasing A1

(figure 7). The magnetic phase transition temperature TN

increases with increase of A1.
In principle one can obtain different behaviors of the

phonon frequencies, hardening or softening in the temperature

Figure 7. Dependence of the phonon energy ω on the surface
magnetic interaction constant A1s/A1 for a multiferroic nanoparticle
with N = 7 shells, Rms/Rm = 1.5, Res/Re = 1.5 for different
temperatures T : (1) 300; (2) 200 K.

regions below TN and between TN and TC depending on
the sign of R, softening for negative values and hardening
for positive ones [2]. The different multiferroic substances
have different interactions between the two subsystems and
thus different Rm- and Re-values, positive or negative.
In BiMnO3 and YCrO3 there is an interaction between
ferromagnetic and ferroelectric subsystems, in YMnO3 and
BiFeO3—antiferromagnetic and ferroelectric [1]. In BiCrO3

films recently it has been found that there is an interaction
between antiferroelectricity and antiferromagnetism (or weak
ferromagnetism) [30]. Modern studies of hexagonal YMnO3

have revealed a coupling between the ferroelectric and
magnetic ordering [31]. Evidence of the importance and the
stronger influence of the spin–phonon interaction constant Rm

is the increasing (or decreasing) of the phonon energy with
increasing |Rm| for Rm < 0 (or Rm > 0), independent of the
sign of Re.

We find that the phonon damping γ increases with
temperature and with increasing Rm (for the two cases Rm > 0
and Rm < 0, because the damping is proportional to R2

m)
(figure 8). It is clearly seen that around the phase transition
temperatures TN and TC there are strong anomalies in the
phonon damping which is in agreement with the experimental
data of Haumont et al [6]. The damping increases with
increasing of the exchange interaction constants A1 and J
and with increasing of the anharmonic pseudo-spin–phonon
interaction constants Rm and Re.

The effect of the coupling constant between the magnetic
and electric subsystems g on the phonon spectrum is shown
in figures 9 and 10. It can be seen that the phonon energy
ω depends strongly on g below TN (figure 9). Above TN it
is independent of g. With raising of g the Néel temperature
TN increases and the kink around TN disappears. The curves
are not so steep at low temperatures. As already mentioned,
ω depends also on the sign of the spin–phonon interaction
Rm. With increasing g for T = const the phonon energy
is enhanced for Rm < 0 and reduced for Rm > 0. There
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Figure 8. Temperature dependence of the phonon damping γ for a
multiferroic nanoparticle with N = 7 shells, Rms/Rm = 1.5,
Res/Re = 1.5 and different bulk spin–phonon interaction constants
|Rm|: (1) 2; (2) 6; (3) 10 cm−1.

Figure 9. Temperature dependence of the phonon energy ω for a
multiferroic nanoparticle with N = 7 shells, Rms/Rm = 1.5,
Res/Re = 1.5, and different magnetoelectric coupling constants g:
(1) 40; (2) 80; (3) 120 K.

is experimental evidence of different coupling strengths and
different coupling mechanisms between the magnetic and
ferroelectric systems in different hexagonal multiferroics. The
replacement of magnetic Ho for Y in YMnO3 results in
an even larger suppression of the thermal conductivity [32].
Sergienko et al [33] predicted that the polarization in HoMnO3

is enhanced by up to two orders of magnitude with respect to
that in TbMnO3 where the ME interaction term is linear in the
electrical dipole moment. The damping of the phonon mode
γ decreases with increasing of the magnetoelectric constant g
(figure 10). The decrease is stronger at higher temperatures.
The damping can be observed from the full width at half
maximum in Raman spectroscopic experiments. Sushkov
et al [34] have obtained very different line widths in different
multiferroic substances. The origin of the different widths is
not quite clear. We have obtained that the damping of the

Figure 10. Dependence of the phonon damping γ on the
magnetoelectric coupling constant g for a multiferroic nanoparticle
with N = 7 shells, Rms/Rm = 1.5, Res/Re = 1.5, and different
temperatures T : (1) 100; (2) 300; (3) 300 K.

phonon mode is strongly dependent on the magnetoelectric
coupling g, on the exchange interaction constants A1, J ,
and mostly on the spin–phonon interaction constants Rm and
Re. In figure 8 we show that the damping increases with
increase of |Rm|. Rm is indirectly connected with the radius
of the rare earth ion which is different in various multiferroics
(see discussion after figures 5 and 6). So we have different
Rm-values in various multiferroic compounds which leads
to different damping values, i.e. to different line widths in
different multiferroic substances. The different anharmonic
spin–phonon interactions are one of the possible explanations
of the different line widths in different multiferroic substances.
The magnetoelectric coupling can also be different in the
different multiferroic substances [32].

In order to study the size effects, we have calculated the
dependence of the phonon energy and the phonon damping
on the particle shell numbers N . The phonon energy ω can
decrease or increase depending on the ratio Rms/Rm and/or
Res/Re with decreasing particle size, whereas the phonon
damping increases always. With decreasing of N , ω decreases
for the case where the surface constants are larger than the bulk
ones Rs/Rb < 1 and increases for the other case Rs/Rb > 1.
Kamba et al [10] and Singh et al [13] have observed that
the Raman-mode frequencies in BFO ceramics and thin films
are higher than the modes seen in single crystals [6]. In
order to obtain this increase of the phonon energy in BFO
nanostructures, we have to take parameters according to the
second case Rs/Rb > 1 (figures 11 and 12). The phonon
energy and the phonon damping increases with decreasing of
particle size. This is in agreement with the experimental data of
Popa et al [16]. They obtained reduced intensities and widened
Raman peaks in BFO powders which could be related to the
small crystal size of 7–11 nm within the powder particles.

The discussion above was done for H = 0. The
influence of an applied magnetic field H on the phonon energy
can be seen in figures 13 and 14. The phonon energy ω

and the magnetic phase transition temperature TN increase
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Figure 11. Dependence of the phonon energy ω on the particle size
of a multiferroic nanoparticle with Rms/Rm = 1.5, Res/Re = 1.5 for
different temperatures T : (1) 500; (2) 400; (3) 300 K.

Figure 12. Dependence of the phonon damping γ on the particle size
of a multiferroic nanoparticle with Rms/Rm = 1.5, Res/Re = 1.5 for
different temperatures T : (1) 300; (2) 400; (3) 500 K.

with increasing H and the kink around TN disappears. This
is in qualitative agreement with the experimental data of
Cheong [35]. The phonon damping decreases for larger values
of the applied magnetic field H (figure 15) and the anomaly
around TN disappears, too. A similar increase of the phonon
energy and decrease of the phonon damping with increasing
magnetic field was observed in ferromagnetic nanoparticles by
Yu et al [36].

5. Conclusions

The coexistence and interplay of different properties—
magnetic, ferroelectric and phonon—in multiferroic nanopar-
ticles has been investigated based on the Heisenberg and the
transverse Ising models, taking into account the anharmonic
spin–phonon and phonon–phonon interaction terms. We have
obtained for the first time the temperature dependence of
the phonon spectrum including damping effects for different

Figure 13. Temperature dependence of the phonon energy ω for
Rms/Rm = 1.5, Res/Re = 1.5, and different H -values: (1) H = 0,
(2) 50; (3) 100 Oe.

Figure 14. Magnetic field dependence of the phonon energy ω for
Rms/Rm = 1.5, Res/Re = 1.5, and different temperatures T : (1) 500;
(2) 400; (3) 300 K.

magnetoelectric coupling, surface exchange interaction, and
mostly for different surface spin–phonon interaction constants.
The phonon energy and the phonon damping show strong
anomalies around the magnetic and electric phase transition
temperatures TN and TC, respectively, which are due to the
magnetoelectric and to the spin–phonon interaction. With
decreasing of the magnetic spin–phonon coupling Rm, i.e. de-
creasing of the radius of the rare earth ion in hexagonal
RMnO3 nanoparticles, the phonon frequency increases and
the anomaly around TN is smaller, for example for R = Y.
We found that the phonon damping is strongly dependent on
the magnetoelectric coupling g, on the exchange interaction
constants A1 and J , and on the spin–phonon interaction
constants Rm and Re. The different anharmonic spin–phonon
interaction constants Rm (due, for example, to different rare
earth ion radii or to different exchange interaction constants
A1) or/and the different magnetoelectric constants g are one
of the possible explanations of the different line widths
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Figure 15. Magnetic field dependence of the phonon damping γ for
Rms/Rm = 1.5, Res/Re = 1.5, and different temperatures T : (1) 100:
(2) 200; (3) 300 K.

obtained in different multiferroic substances. The phonon
energy and the damping increase with decreasing particle size.
The influence of an external magnetic field on the phonon
spectrum of multiferroic nanoparticles was also calculated. We
found that the phonon energy increases whereas the damping
decreases with enhancing of H . The kink around TN vanishes.
The theoretical results are in qualitative agreement with the
experimental data. Unfortunately not many experimental data
exist for multiferroic nanoparticles.
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